Diskussion:Kampfattacken

Aus Eressea
Version vom 22. Juli 2008, 15:55 Uhr von Kitaktus (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springenZur Suche springen

Kritische Treffer

Die Erläuterung zu kritischen Treffern scheint mir etwas vage. Da heißt es:

  • Kritische Treffer: Schlägt der Angriff fehl, hat der Angreifer zusätzlich eine 10%ige Chance, seinen Angriff doch noch zu verwandeln: Er kann ein zweites Mal zuschlagen und zwar mit einer um 90 bis 99% (Zufall) erhöhten Trefferchance. Dadurch haben stark benachteiligte Kämpfer die Möglichkeit, zumindest einige Zufallstreffer zu landen.

Interpretiert man das genau so, wie es dasteht, dann ergibt sich bei BT=30%:

  • Mit 30% Wahrscheinlichkeit ist der Angriff im ersten Versuch erfolgreich. Mit 70% Wahrscheinlichkeit schlägt er fehl und man hat dann noch mit 10% Wahrscheinlichkeit einen zweiten Versuch mit einer Trefferchance von 30+90% bis 30+99%. Dieser zweite Versuch ist ein garantierter Treffer, so dass sich die Gesamt-Trefferwahrscheinlichkeit zu 30% + 70%*10% = 37% ergibt.

Wenn ich den Algorithmus allerdings richtig in Erinnerung habe, passiert folgendes:

  • Man würfelt mit einem 1d100-1 (also eine Zahl W1 aus 0,1,...,99). Ist das Ergebnis 90 oder größer, wird nochmal gewürfelt (W2) und beide Würfe werden zusammengezählt (W1+W2). Dazu addiert man die Basistrefferchance (BT). Ist das Ergebnis (W1+BT bzw. W1+W2+BT) größergleich 100, dann hat man getroffen.

Für BT=30 erreicht man 100 und mehr genau dann, wenn W1>=70 ist, also mit 30%-iger Wahrscheinlichkeit. Oder Allgemein: Für alle BT zwischen 10 und 100 landet man mit BT-prozentiger Wahrscheinlichkeit einen Treffer.

Für BT=5 sieht es so aus: Für W1<90 ist BT+W1<100 und man hat keine zweite Chance. Für W1>=95 ist bereits BT+W1>=100. Bleiben also die Fälle W1=90,91,92,93,94. Um einen Treffer zu landen muss hier W2>=5,4,3,2 bzw. 1 sein. Die Wahrscheinlichkeiten dafür sind 95%,96%,97%,98% bzw. 99%. Die Gesamttrefferwahrscheinlichkeit beträgt dann 5%+1%*(95%+96%+97%+98%+99%)=9.85%

Für -90<=BT<=0 ist BT+W1 immer <100 und man braucht die zweite Chance. Für W1=90,...,99 muss W2>=10-BT,9-BT,...,1-BT sein. Die Wahrscheinlichkeiten dafür sind (90+BT)%,(91+BT)%,...,(99+BT)%. Die Gesamttrefferwahrscheinlichkeit beträgt dann 1%*((90+BT)%+...+(99+BT)%)=9.45%+BT%/10.

Für BT=-95 ergibt sich für die Gesamttrefferwahrscheinlichkeit 1%*((96+BT)%+...+(99+BT)%)=0.1%.

Für BT<=-100 ist sie schließlich 0. (Das ist bei einer Taltentdifferenz von 26 und mehr.)

Kann jemand bestätigen, dass die "kritische Treffer"-Regel so gemeint ist? Oder habe ich da was falsch verstanden?